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Zero-Range Process with Open Boundaries
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We calculate the exact stationary distribution of the one-dimensional zero-range
process with open boundaries for arbitrary bulk and boundary hopping rates.
When such a distribution exists, the steady state has no correlations between
sites and is uniquely characterized by a space-dependent fugacity which is a
function of the boundary rates and the hopping asymmetry. For strong bound-
ary drive the system has no stationary distribution. In systems which on a ring
geometry allow for a condensation transition, a condensate develops at one or
both boundary sites. On all other sites the particle distribution approaches a
product measure with the finite critical density ρc. In systems which do not
support condensation on a ring, strong boundary drive leads to a condensate
at the boundary. However, in this case the local particle density in the interior
exhibits a complex algebraic growth in time. We calculate the bulk and bound-
ary growth exponents as a function of the system parameters.

KEY WORDS: Zero range process; open boundaries; invariant measure; hydro-
dynamical limit; condensation.

1. INTRODUCTION

The zero-range process (ZRP) has originally been introduced in 1970 by
Spitzer(1) as a model system for interacting random walks, where parti-
cles on a lattice hop randomly to other neighboring sites. The hopping
rates wn depend only on the number of particles n at the departure site.
This model has received renewed attention because of the occurrence of a
condensation transition(2–6) analogous to Bose-Einstein condensation and
because of its close relationship with exclusion processes.(7) Condensation
phenomena are well-known in colloidal and granular systems (see ref. 8
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for a recent study making a connection with the zero-range process), but
appear also in other contexts, such as socio-economics(9) and biologi-
cal systems(10) as well as in traffic flow(11) and network theory.(12,13) In
the mapping of the ZRP to exclusion processes in one space dimension,
condensation corresponds to phase separation. The ZRP has served for
deriving a quantitative criterion for the existence of non-equilibrium phase
separation(14) in the otherwise not yet well-understood driven diffusive sys-
tems with two conservation laws. For the occurrence of condensation the
dimensionality of the ZRP does not play a role and we shall consider only
the one-dimensional (1d) case.

Most studies of the ZRP focus on periodic boundary conditions or
the infinite system. Under certain conditions on the rates wn (see below)
the grand-canonical stationary distribution is a product measure, i.e. there
are no correlations between different sites.(15) In addition, an exact coarse-
grained description of the dynamics is possible in this case in terms of a
hydrodynamic equation for the particle density ρ(x, t).(16,17)

In zero-range processes for which the hopping rates wn admit con-
densation, one finds that above a critical density ρc a finite fraction of all
particles in the system accumulate at a randomly selected site, whereas all
other sites have an average density ρc.(5,18,19) The large scale dynamics of
condensation has been studied in terms of a coarsening process.(19,20) The
steady-state and the dynamics of open systems which may admit conden-
sation has not been addressed so far.

In the present work we consider a ZRP on an open chain with arbi-
trary hopping rates and boundary parameters. Particles are added and
removed through the boundaries. In the interior of the system hopping
may either be symmetric or biased in one direction. We calculate the exact
steady-state distribution, when it exists, and find it to be a product mea-
sure. In order to study condensation phenomena in the open system we
analyze in detail a particular but generic ZRP which admits condensation.
In this model the hopping rates for large n take the form wn =1+b/n. On
a periodic lattice it is known that a condensation takes place at high den-
sities when b>2. We find that in an open system and for a weak bound-
ary drive the model evolves to a non-critical steady-state. On the other
hand, if the boundary drive is sufficiently strong, the system may develop
a condensate on one or both of its boundary sites even for b < 2. The
number of particles in the condensate grows linearly in time due to the
strong boundary drive. In this case the interior of the system may either
(a) reach a sub-critical steady-state, (b) reach a critical steady-state, or (c)
it may evolve such that the local particle density exhibits a complex alge-
braic growth in time. Which behavior is actually realized depends on the
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boundary rates, on the parameter b, and on the asymmetry in the hopping
rates.

The paper is organized as follows. In Section 2 we define the ZRP
with open boundaries, and give some examples of possible hopping rates
wn. The exact steady-state distribution for general boundary parameters
and rates wn is derived in Section 3. In Section 4 we consider the behav-
ior of finite systems for totally asymmetric, partially asymmetric and sym-
metric hopping rates. The long-time temporal behavior of local densities is
obtained, and supporting numerical simulations are presented. The long-
time behavior of bulk densities in an infinite system is exactly obtained
using a hydrodynamical approach in Section 5. Finally, we present our
summary and conclusions in Section 6.

2. ZERO-RANGE PROCESSES WITH OPEN BOUNDARIES

The ZRP on an open 1d lattice with L sites is defined as follows.
Each site k may be occupied by an arbitrary number n of particles. In the
bulk a particle at site k (say, the topmost of n particles) hops randomly
(with exponentially distributed waiting time) with rate pwn to the right
and with rate qwn to the left. Without loss of generality, we take through-
out this paper p �q, so that particles in the bulk are driven to the right.
At the boundaries these rules are modified. At site 1 a particle is injected
with rate α, hops to the right with rate pwn, and is removed with rate
γwn. At site L a particle is injected with rate δ, hops to the left with rate
qwn, and is removed with rate βwn (see Fig. 1).

q wn β wn

q wn p wn

γ wn p wn

α

δ

Fig. 1. Graphic representation of the ZRP model with open boundaries.
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Examples for such processes include the trivial case of non-interacting
particles (wn =n) and the pure chipping process (wn = 1).(21) In the map-
ping to exclusion processes where the particle occupation number becomes
the interparticle distance, the chipping model defined on a ring maps onto
the simple exclusion process which is integrable and can be solved by the
Bethe ansatz, combinatorial methods, recursion relations and matrix prod-
uct methods.(22,23) A largely unexplored but interesting integrable model
with rates wn = (1 − qn)/(1 − q) that interpolates between these two cases
has been found in ref. 24. The truncated chipping process with wn = 1
for 1 � n � K and wn = ∞ for n > K maps onto the drop-push model(25)

which is also integrable.(26) For w1 =w and wn = 1 for n� 2 one obtains
the version of the non-integrable KLS model(27) that has been introduced
in ref. 28 as a toy model for traffic flow with a non-symmetric current
density relation. A parallel updating version of this model was found to
correspond to a broader class of traffic models(29) as well as an inte-
grable family of ZRP’s(30) which includes the asymmetric avalanche pro-
cess.(31)

In a similar mapping to exclusion processes the family of models with
hopping rate

wn =
[

1+ b′

n

]−1

, (1)

describes the diffusion of interacting rods on the real line.(32) In this model
the occupation number n of the zero-range process maps to the (integer)
distance of rods of arbitrary (integer) length which have long-range inter-
action with rates given by Eq. (1). In the continuum limit the length of
these rods and the distance n become finite real numbers. The condensa-
tion model(4,5,14,18–20) with

wn =1+ b

n
(2)

is a generic model that exhibits the condensation phenomenon described
in the introduction for b > 2. Both models are non-integrable and hence
alternative tools must be employed for deriving information about their
dynamical behavior. We remind the reader that this model is generic in
the sense that it represents the complete family of models with rates of
the form wn = 1 + b/n + O(n−s) where s > 1. Other ZRP’s which exhibit
condensation are defined by the rates wn = 1 + b/nσ with 0 < σ < 1 and
b>0(14) or by rates approaching zero.(6)
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3. STATIONARY DISTRIBUTION

A state of the model at time t may be defined through a probabil-
ity measure Pn on the set of all configurations n= (n1, n2, . . . , nL), nk ∈N.
Here nk is the number of particles on site k. To calculate the stationary
distribution it is convenient to represent the generator H of this process
in terms of the quantum Hamiltonian formalism(23) where one assigns a
basis vector |n〉 of the vector space (C∞)⊗L to each configuration and
the probability vector is defined by |P 〉=∑n Pn|n〉. It is normalized such
that 〈s|P 〉 = 1 where 〈s| =∑

n〈n| and 〈n |n′ 〉 = δn,n′ . The time evolution
described above is given by the master equation

d

dt
|P(t)〉=−H |P(t)〉, (3)

through the “quantum Hamiltonian” H . This operator has off-diagonal
matrix elements Hn,n′ which are the hopping rates between configurations
n,n′ and complementary diagonal elements to preserve conservation of
probability.

Since we have only nearest neighbor exchange processes the Hamilto-
nian in (3) can be written as

H =h1 +hL +
L−1∑
k=1

hk,k+1, (4)

where hk,k+1 acts nontrivially only on sites k and k +1 (corresponding to
hopping) while h1, hL generates the boundary processes specified above.
For the ZRP we define the infinite-dimensional particle creation and anni-
hilation matrices

a+ =

⎛
⎜⎜⎜⎝

0 0 0 0 . . .

1 0 0 0 . . .

0 1 0 0 . . .

0 0 1 0 . . .

. . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎠ , a− =

⎛
⎜⎜⎜⎝

0 w1 0 0 . . .

0 0 w2 0 . . .

0 0 0 w3 . . .

0 0 0 0 . . .

. . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎠ (5)

as well as the diagonal matrix d with elements di,j = wiδi,j . With these
matrices we have

−hk,k+1 =p(a−
k a+

k+1 −dk)+q(a+
k a−

k+1 −dk+1) (6)
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and

−h1 =α(a+
1 −1)+γ (a−

1 −d1), −hL = δ(a+
L −1)+β(a−

L −dL). (7)

The “ground state” of H has eigenvalue 0. The corresponding right eigen-
vector is the stationary distribution which we wish to calculate.

Guided by the grand-canonical stationary distribution of the peri-
odic system we consider the grand-canonical single-site particle distribu-
tion where the probability to find n particles on site k is given by

P ∗(nk =n)= zn
k

Zk

n∏
i=1

w−1
i . (8)

Here the empty product n = 0 is defined to be equal to 1 and Zk is the
local analogue of the grand-canonical partition function

Zk ≡Z(zk)=
∞∑

n=0

zn
k

n∏
i=1

w−1
i . (9)

The corresponding probability vector |P ∗
k ) with the components P ∗(nk =

n) satisfies

a+|P ∗
k )= z−1

k d|P ∗
k ), a−|P ∗

k )= zk|P ∗
k ). (10)

The proof of this property is by straightforward calculation.
As an ansatz for calculating the stationary distribution we take the

L-site product measure with the one-site marginals (8) which is given by
the tensor product

|P ∗ 〉= |P ∗
1 )⊗|P ∗

2 )⊗· · ·⊗ |P ∗
L) (11)

and according to (10) satisfies

−H |P ∗ 〉 =
[L−1∑

k=1

(pzk −qzk+1)(z
−1
k+1dk+1 − z−1

k dk)

+(α −γ z1)(z
−1
1 d1 −1)+ (δ −βzL)(z−1

L dL −1)

]
|P ∗〉. (12)
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The uncorrelated particle distribution (11) is stationary if and only if
all terms on the right hand side of this equation cancel. It is not difficult
to see that this is satisfied for the following stationarity conditions on the
fugacities zk

pzk −qzk+1 =α −γ z1 =βzL − δ ≡ c . (13)

The quantity c is the stationary current.
This recursion relation has the unique solution

zk =
[(α + δ)(p −q)−αβ +γ δ]

(
p
q

)k−1 −γ δ +αβ
(

p
q

)L−1

γ (p −q −β)+β(p −q +γ )
(

p
q

)L−1
(14)

and the current is given by

c= (p −q)
−γ δ +αβ

(
p
q

)L−1

γ (p −q −β)+β(p −q +γ )
(

p
q

)L−1
. (15)

Our process is defined on a finite lattice. With rates wn > 0 for all n � 1
the process is therefore ergodic and hence the invariant product measure
is, when it exists, unique. The local fugacities zk are completely specified
by the hopping asymmetry and the boundary parameters. The stationary
density profile follows from the fugacity profile through the standard rela-
tion

ρk = zk

∂

∂zk

ln Zk , (16)

where Zk =Z(zk) is determined by the bulk hopping rules, as given in (9).
We remark that up to corrections exponentially small in system size

L, the bulk fugacity is a constant

zeff = α

p −q +γ
, (17)

that depends only on the left boundary rates. This is in agreement with
the observation(17) for special boundary parameters and can be explained
in terms of the more general theory of boundary-induced phase transi-
tions.(33)

Some special cases of (14) deserve mentioning.
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(1) Setting the boundary extraction rates equal to the corresponding
bulk jump rates, i.e., β =p, γ =q, and defining reservoir fugacities zr,l by
α =pzl, δ =qzr , the expression (14) reduces to

zk =
(zl − zr)

(
p
q

)k−1 + zr − zl

(
p
q

)L−1

1−
(

p
q

)L−1
. (18)

This dynamics has a natural interpretation as coupling the system to
boundary reservoirs with fugacities zr , zl , respectively. This case has been
considered in refs. 15, 17, 34, 35 for p = q. The general solution (14) for
arbitrary boundary rates appears to be a new result for the ZRP.

(2) For

γ δ =αβ

(
p

q

)L−1

(19)

the current vanishes and the system is in thermal equilibrium. For the
symmetric case p =q this implies constant fugacities zk.

(3) For symmetric hopping p = q = 1 the fugacity profile is generally
linear

zk = α + δ +αβ(L−1)− (αβ −γ δ)(k −1)

β +γ +βγ (L−1)
(20)

with a current

c= αβ −γ δ

β +γ +βγ (L−1)
. (21)

Notice that the linear fugacity profile does not imply a linear density pro-
file except in the very special case of non-interacting particles where zk =
ρk.

(4) In the totally asymmetric case, q =0, we find

zk = α

p +γ
≡ z for k 	=L, (22)

zL = (α + δ)p +γ δ

β(p +γ )
. (23)

The current is given by c=pz.
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In the considerations above we have tacitly assumed that the local
partition function Zk exists for all k. Since for suitable choices of bound-
ary parameters the local fugacities at the boundary may take arbitrary val-
ues this assumption implies an infinite radius of convergence of Zk =Z(zk)

which is not the case in the models described above. This raises the ques-
tion of the long-time behaviour of the ZRP for strong boundary drive, i.e.,
rates which drive the boundary fugacities out the radius of convergence
of Z. This is studied in detail in the following sections for the conden-
sation model (2). The rod model (1) can be regarded as a generic ZRP
without bulk condensation transition, but finite radius of convergence for
Z. Where appropriate we compare its behaviour with that of the conden-
sation model.

4. CONDENSATION MODEL — STEADY STATE AND DYNAMICS

NEAR THE BOUNDARY

In this section we consider in some detail the long-time behavior of
the condensation model (2). For this model the local fugacity zk has to
satisfy zk �1 in the steady state. On a ring geometry, the model exhibits a
condensation for b > 2 at high density. We first analyze the totally asym-
metric case, where particles can only hop to the right. The cases of partial
asymmetry and symmetric hopping are then treated.

4.1. Totally Asymmetric Hopping

For the totally asymmetric case we take q =γ =δ=0. For the normal-
ization of time we set p =1. The exact steady-state solution (14) yields

zk = α ≡ z for k 	=L, (24)

zL = α

β
(25)

and the current is given by c=z. Since for this model z has to satisfy z�1,
the steady state (24, 25) is valid only for α �1 and β �α. In this case the
single-site steady-state distribution is given, for large n, by P ∗(nk = n) ∼
zn/nb.

We now proceed to discuss the dynamical behavior of the model in
the case that a stationary state does not exist. For α >1 the following pic-
ture emerges.

Site 1. On site 1 particles are deposited randomly with rate α > 1
and are removed by hopping to site 2 with rate 1+b/n1. Hence the occu-
pation number performs a simple biased random walk on the set n1 of
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positive integers with drift α − 1 − b/n1 which is positive for any n1 >

b/(α − 1). Such a random walk is non-recurrent and reaches asymptoti-
cally the mean velocity v=α−1. Hence the mean particle number N1(t)=
〈n1(t) 〉 on site 1 grows asymptotically linearly

N1(t)∼ (α −1)t. (26)

Boundary Sites k >1. We extend the random walk picture (which is
strictly valid for site 1) to site 2. On site 2 particles are injected (by hop-
ping from site 1) with rate 1 + b/n1 and are removed with rate 1 + b/n2.
Since n1 increases in time on average the input rate approaches 1 and the
occupation number at site 2 performs a biased random walk with hopping
rate 1 to the right and rate 1+b/n2 to the left. Whether this random walk
is recurrent depends on b. The asymptotic behavior has been analyzed in
ref. 36. We merely quote the result:

N2(t)∼

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t1/2 b<1,

t1/2/ ln t b=1,

t1−b/2 1<b<2,

ln t b=2,

ρ∗ b>2.

(27)

The constant

ρ∗ = 1
b−2

(28)

is the critical density of the condensation model.(4) It is approached with
a power law correction t1−b/2. By applying this random walk picture to
further neighboring sites, and assuming scaling, it has been shown that
neighboring boundary sites behave asymptotically in the same fashion.(36)

Similar analysis shows that the square-root increase of the particle density
occurs also for the model (1) for all values of its interaction parameter b′.

To test the validity of the random walk picture to sites beyond k =2,
we carried out numerical simulations of a totally asymmetric model with
L=5. We first note that since the hopping is totally asymmetric the time
evolution of the system up to site k is independent of what happens at
sites to the right of k. In particular, the dynamics on all sites k < L is
independent of β. Hence, in order to study boundary layers it is sufficient
to simulate very small systems of only a few sites. In Fig. 2 we present
the long-time behavior of the occupation of sites k = 1 − 4 for α = 2 and
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Fig. 2. Temporal evolution of local densities, as obtained from numerical simulations of the
totally asymmetric condensation model, with b = 3/2, and α = 2. The solid line corresponds
to the expected growth law t1/4, and the dotted line corresponds to linear growth.

b=3/2. It is readily seen that while site 1 grows linearly in time, sites 2–4
grow with the expected power law t1/4.

Bulk Sites k �1. The picture of the simple random walk becomes
increasingly inaccurate as one enters into the bulk of the system, since
injection events onto a site become increasingly correlated in time. This
violates the random walk assumption and makes the previous analy-
sis invalid in this case. The temporal behavior of bulk sites k � 1 can
be treated exactly by using a hydrodynamic approach, which yields the
behavior of bulk sites in the long-time limit. This analysis, carried out in
Section 5, shows a different dynamical behavior in the bulk. Notice, how-
ever, that for any finite system all “bulk sites” have finite distance from the
boundary and hence behave asymptotically like the boundary sites.

Site L. Since the motion of particles on site k is independent of the
motion on sites to their right we expect the bulk result to be asymptot-
ically valid on all sites up to site L − 1, i.e., there is no right boundary
layer with yet another set of growth exponents. On site L the following
picture emerges. There is an asymptotic incoming flux c = 1 and an exit
rate β(1+b/nL). For β =1 the boundary site behaves like a bulk site and
we obtain the bulk growth exponent. For β <1 the outgoing flux does not
compensate the incoming flux which yields asymptotically linear growth
ρL(t)= (1 −β)t . For β > 1 a finite stationary chemical potential zL = 1/β

is approached.
In Fig. 3 we present simulation results for the long-time dynamics of

the occupation of site k =L=5. Depending on the value of β the occupa-
tion number either grows linearly (β <1), grows with the same power law
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Fig. 3. Temporal evolution of local density at the rightmost site, as obtained from numeri-
cal simulations of the totally asymmetric condensation model, with b = 3/2, α = 2 and β =
1/2,1,2. The solid line corresponds to the expected growth law t1/4, and the dotted line
corresponds to linear growth.

as the bulk (β =1), or approaches a finite density (β >1), as expected from
the above discussion.

To complete the discussion of the totally asymmetric case we remark
that for a subcritical left boundary α < 1 but supercritical β <α the bulk
of the system becomes stationary with fugacity zbulk =α. On site L a con-
densate develops with linearly increasing particle density ρL(t)∼ (α −β)t .

4.2. Partially Asymmetric Hopping

We now analyze the dynamical behavior of the partially asymmetric
model in the case where no stationary state exists. We start by consider-
ing the case where the rates at both boundaries are such that the occupa-
tion of the two boundary sites increase linearly with time. This takes place
for α − γ <p − q <β − δ. Here sites k = 1 and k =L act as reservoirs for
the rest of the system. The effective rates at which the reservoirs exchange
particles with the system are αeff =βeff =p and γeff = δeff = q. The fugac-
ity (14) at sites k =2, . . . ,L−1 thus becomes zk =1. The asymptotic tem-
poral behavior (27) holds also in this case.

The picture changes qualitatively if only one boundary fugacity does
not exist. Suppose first that this happens at site 1. In this case the den-
sity on site 1 will increase linearly with time, as in the previous totally
asymmetric case. This happens when α − γ >p − q and β − δ >p − q. As
before, site 1 acts as a reservoir for the rest of the system, with effective
rates αeff =p, γeff = q. Sites k = 2, . . . ,L− 1 are thus stationary, with the
fugacity given by (14). The fugacity at sites away from the right boundary
approaches 1, with a deviation exponentially small in the system size (see
Fig. 4). Hence, starting from an empty initial state one expects algebraic
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Fig. 4. The fugacity profile (14) for the partially asymmetric case, with b = 3/2, p = 3/4
and q = 1/4. Solid line corresponds to a left condensate (α = 3/4, β = 1, γ = 1/4, δ = 1/5) and
dashed line corresponds to a right condensate (α =1/2, β =3/4, γ =1/4, δ =1/4).

growth of the local density until, after a long crossover time, stationarity
is reached.

If, on the other hand, the right boundary rates drive site L out of
equilibrium, then the density on site L increases linearly in time. This hap-
pens when α − γ < p − q and β − δ < p − q. Site L acts effectively as a
boundary reservoir with βeff = p and δeff = q. As in the preceding case
the system becomes stationary, but with a finite (independent of system
size) deviation of the bulk fugacity from the critical value z = 1. Both in
the bulk and at the left boundary the density approaches the finite value
dictated by the left boundary fugacity (see Fig. 4).

Finally, for β −δ<p−q <α−γ both boundary sites have finite fugac-
ity, and the system reaches a non-critical steady state, as given by (14).

4.3. Symmetric Hopping

The analysis of symmetric hopping (p = q = 1) follows very closely
that of the partially asymmetric case, except that here the fugacity pro-
file is linear rather than exponential. In particular, if only one boundary
is driven out of equilibrium, a condensate appears at that boundary with
a particle density which increases linearly with time. This site, say site 1,
acts as a reservoir with αeff = γeff = 1. The fugacity profile decreases lin-
early from 1 −O(1/L) at the left boundary to δ/β +O(1/L) at the right
boundary, as given by (20).
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When both boundary sites are supercritical they act as reservoirs
with effective rates αeff = βeff = γeff = δeff = 1, yielding zk = 1 throughout
the system. This is also the case relevant for studying the fluid-mediated
interaction of probe particles in two-species systems.(36) We expect simi-
lar boundary growth laws as in the asymmetric case. This is because the
incoming flux from the direction of the bulk is compensated by the out-
going flux at the boundary and one has an effective random picture with
the same rates as above. However, corrections to scaling are expected to
be larger as current correlations are now stronger due to hopping contri-
butions from the bulk. Moreover, as opposed to the asymmetric case, in a
semi-infinite system both boundaries have the same growth exponents.

5. HYDRODYNAMICS — EXACT ANALYSIS OF DYNAMICS

IN THE BULK

In order to analyze the time evolution of sites far away from the
boundaries we consider the hydrodynamic limit of the ZRP model. The
coarse-grained time evolution of the density profile starting from a non-
stationary initial profile can be determined, by adapting standard argu-
ments,(16,37), from the continuum limit of the lattice continuity equation.
This equation reads

d

dt
ρk = ck−1 − ck (29)

with the local current

ck =pzk −qzk+1 (30)

and z expressed in terms of ρ. Together with an appropriate choice of con-
stant boundary fugacities the solution is uniquely determined.(17)

For the driven system one obtains under Eulerian scaling (lattice con-
stant a →0, t → t/a, system length fixed)

∂

∂t
ρ(x, t)=−(p −q)

∂

∂x
z(x, t)+a(p +q)/2

∂2

∂x2
z(x, t) . (31)

This time evolution equation follows from (29) by a Taylor expansion
of the space-dependence, keeping as regularization the lowest order term
in the lattice constant. Notice that this infinitesimal viscosity term does
not represent the true lowest order correction to the hydrodynamic equa-
tion (which is not the object of our investigation), but rather serves as a
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regularization that selects the physical solution of the otherwise ill-posed
initial value problem with fixed boundary fugacities. It takes care of a
proper description of discontinuities which may arise in the form of shocks
or a boundary discontinuity. Indeed, in the large-time limit the density
approaches a constant given by the left boundary fugacity, with a jump
discontinuity at the right boundary.(17) This is in agreement with the exact
result derived in Section 4.2. We stress that (31) provides an exact descrip-
tion of the density evolution under Eulerian scaling. It is not a continuum
approximation involving a mean field or other uncontrolled assumption,
even though for this model a standard mean-field analysis which neglects
all correlations would lead to the same result. The simple form of (31)
originates in local stationarity. The absence of noise is due to Eulerian
scaling, i.e., the effects of noise appear on finer scales. For a recent rig-
orous discussion of the hydrodynamic limit of stochastic particle systems,
(see refs. 16, 37 and 38).

Consider a semi-infinite system which is initially empty and has con-
stant density at the left boundary. This boundary condition induces a
rarefaction wave entering the bulk which can be constructed using the
method of characteristics. The speed v0 of the wave front is given by the
zero-density characteristic of (31) which is the average speed v0 = (p−q)w1
of a single particle. In light of the results of the previous sections we are
particularly interested in the case where the left boundary fugacity is equal
to 1. For b<2 in the condensation model [and for any b′ in the rod model
(1)] this corresponds to an infinite boundary density. On the other hand,
for b>2 the corresponding boundary density is ρc (28). Therefore we are
searching for a scaling solution in terms of the scaling variable u=x/(v0t)

such that ρ(u)=0 for u�1 while ρ =ρc or ρ =∞ at the left boundary. On
physical grounds the solution has to be continuous as no shock disconti-
nuities can develop for the initial state (empty lattice) under consideration.
Under these conditions (31) can be integrated straightforwardly by setting
a =0 and one finds the implicit representation

d z

d ρ
=uw1 . (32)

This is the solution within the interval v1t �x �v0t . Here

vz = (p −q)
dz

dρ
(33)

is the collective velocity of the lattice gas which plays the role of the
speed of the characteristics for the hydrodynamic equation (31). Outside
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this interval one has z = 0 for x � v0t and z = 1 for 0 � x � v1t . We now
analyze this solution in terms of ρ.

For the model (1) one has Z = 1/(1 − z)b
′+1 which yields the

fugacity-density relation z=ρ/(b′ +1+ρ). Hence

ρ(u)= (b′ +1)

(√
1
u

−1

)
. (34)

with v0 = (p−q)/(b′ +1) and v1 =0 for all b′. At any fixed x the bulk den-
sity increases algebraically

ρbulk(t)∼ t1/2 (35)

for any b′ >0.
For the condensation model the local partition is the hypergeometric

function

Z = 2F1(1,1;1+b; z), (36)

which does not admit an explicit representation of z as a function of ρ.
However, as the fugacity is an increasing function in time approaching 1
we may analyze its asymptotic behavior by expanding the hypergeometric
function around z=1.(19)

b<2. Here the left boundary fugacity z = 1 corresponds to infi-
nite left boundary density. Moreover v1 = 0, therefore the solution (32)
describes the density profile in the interval 0 � u � 1. This enables us to
consider fixed x and study the long time limit. In order to analyze the
small u behavior (i.e. z close to 1 and ρ large) one has to distinguish
two domains.(19) For b < 1 one has ρ(z) ∝ z/(1 − z) for large ρ while for
1<b<2 one finds ρ(z)∝z/(1−z)2−b. As a function of u we make the an-
satz ρ ∝ 1/uκ for the large t (i.e. small u) asymptotics. Inserting this into
the differential equation (31) yields a consistent solution with

ρbulk(t)∼ tκ (37)

only for

κ =
{

1
2 for b<1,

2−b
3−b

for 1<b<2
. (38)
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We conclude that the bulk density increases algebraically with the univer-
sal diffusive exponent 1/2 for b<1 and with a non-universal b-dependent
exponent in the range 1 < b < 2 of the condensation model. At b = 1,2
there are logarithmic corrections which we do not discuss further.

For symmetric hopping one describes the density dynamics under
diffusive scaling t → t/a2 and obtains

∂

∂t
ρ(x, t)=p

∂2

∂x2
z(x, t), (39)

which needs no further regularization. Repeating the previous analysis
one finds the same bulk growth exponents as for the asymmetric hopping
model.

b>2. In the condensation regime the boundary density correspond-
ing to z = 1 is ρc (28). Again two different regimes are found from the
asymptotic analysis of the hypergeometric function. For b<3 one has v1 =
0 and repeating the same analysis as for 1<b<2 shows that at fixed x the
density approaches ρc with a power law correction with the same exponent
(2 −b)/(3−b) as before. This is analogous to the behavior in the bound-
ary sites analysed in Section 4, but the exponent is different. For b>3 one
finds for the collective velocity(19)

v1 = (p −q)
(b−3)2(b−2)2

(b−1)2
>0. (40)

Hence an analysis of the long-time behaviour at fixed x is not meaningful.
A domain with constant ρ =ρc spreads into the system, with a front speed
v=v1. This front is preceded by the rarefaction wave (32) for v1t <x <v0t .
This behaviour as a function of b is unexpected as usually changes in the
rarefaction wave of this type are caused by changing the boundary density
rather than an interaction parameter of the driven system.

We stress that there are two questions that cannot be answered by the
hydrodynamic analysis given above. First we apply Eulerian or diffusive
scaling, respectively. This leaves generally open what happens in any semi-
infinite lattice system at finite lattice distance from the boundaries or in
a finite system. Any deviation from the results given above which decays
on lattice scale as one approaches the bulk cannot be detected within the
hydrodynamic description. Boundary layers, which have been analyzed in
Section 4 and found to have an interesting microscopic structure, would
under scaling at best appear as a structureless boundary discontinuity.
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Secondly, the radius of convergence of Z is 1 and forcing the boundary
fugacities z1 or zL to be larger than 1 implies a breakdown of the assump-
tion of local stationarity underlying the hydrodynamic description, at least
in the vicinity of the boundaries. In particular, the hydrodynamic approach
is not applicable for analyzing the condensation regime b>2 if the bound-
ary density exceeds the critical density of the bulk. However, this regime
may be analyzed by the random-walk approach discussed in Section 4.

6. CONCLUSIONS

In this paper we studied the dynamical behavior of the zero-range
process with open boundary conditions for arbitrary bulk and boundary
rates. It is found that for a weak boundary drive the model reaches a
steady state. The exact steady-state distribution is calculated and is shown
to be a product measure characterized by site-dependent fugacities. In the
case of strong drive the system does not reach a steady-state, and its evo-
lution in time is calculated. To this end we considered the condensation
model with an initially empty lattice and studied how the local density
evolves in time. As long as the bulk dynamics does not permit conden-
sation (b < 2) the growth of the local density is algebraic in time with
exponents that we determined using a random walk picture for the bound-
ary region, and standard hydrodynamic description in the bulk. From this
analysis we are led to the conclusion that in the condensation model with
b > 2 (where condensation in a periodic system sets in above the critical
bulk density ρc = 1/(b − 2)) only the boundary sites develop into a con-
densate, with a density increasing linearly in time. All bulk sites become
stationary with finite local fugacities determined by the boundary rates.
Somewhat surprisingly the driven and the symmetric model have the same
bulk and boundary growth exponents. The boundary condensate appears
also for b < 2 when no condensation transition exists in a periodic sys-
tem. It is a general feature of zero-range processes in which Z has a finite
radius of convergence.

For b>1 we observe a precursor to the condensation transition in the
sense that the universal diffusive growth for b<1 breaks down. Bulk and
boundary growth exponents become different and both decrease with b,
i.e. they become non-universal. It is interesting to note that b = 1 plays a
special role also for the stationary state on a ring geometry. For b<1 the
stationary probability to find any given site empty vanishes as the density
is increased to infinity,(19) in agreement with intuition. However, for b>1
every site has a finite probability of being empty, even if the particle den-
sity is infinite. Applied to present scenario this implies the counterintuitive
result that even at very late time, when the average particle density in an
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open system tends to infinity on each site, one still expects to find a finite
fraction of empty sites at any given moment.

In this context it is also instructive to study the mean first passage
time (MFPT) of the boundary particle density, i.e. the mean time τ after
which a particle number N has been reached for the first time at a given
site, starting from an empty site. Using the exact general MFPT expres-
sion(39) for the effective random walk defined above one finds

τ = 1
b−1

[(
N +b

b+1

)
−
(

N +1
2

)]
, (41)

where for non-integer b the factorials are defined by the 
-function. For
large N this quantity has the asymptotic behavior

τ ∼
⎧⎨
⎩

N2 (b<1),

N2 ln N (b=1),

N1+b (b>1).

(42)

Again there is a transition at b = 1, with diffusive behavior for b < 1 and
sub-diffusive exploration of the state space for b>1. In the bulk a simple
random picture for the on-site density dynamics is not valid and a predic-
tion for the bulk MFPT is not possible. For small finite system size one
expects boundary behavior everywhere, but with increasing corrections to
scaling as one moves away from the boundary. The precise nature of the
crossover from the boundary growth exponent to the hydrodynamic bulk
growth exponent remains an open problem.
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